Robustness
![](https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_200/public/media/images/2022-10/thakoor_robustness1.png?itok=9JHU4Oib 200w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_260/public/media/images/2022-10/thakoor_robustness1.png?itok=LAwKXx7C 260w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_320/public/media/images/2022-10/thakoor_robustness1.png?itok=QSmy75NX 320w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_400/public/media/images/2022-10/thakoor_robustness1.png?itok=Q7WanNop 400w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_520/public/media/images/2022-10/thakoor_robustness1.png?itok=_VRPEUrV 520w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_640/public/media/images/2022-10/thakoor_robustness1.png?itok=gAErQwiN 640w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_800/public/media/images/2022-10/thakoor_robustness1.png?itok=LAjP7YYq 800w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_1040/public/media/images/2022-10/thakoor_robustness1.png?itok=F1Wy2D2L 1040w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_1600/public/media/images/2022-10/thakoor_robustness1.png?itok=0-qvOp7L 1280w)
Robust Glaucoma Detection at Multiple Locations
We developed end-to-end deep learning models which enable robust glaucoma detection from data collected at multiple locations by harnessing the power of natural-image pre-trained neural networks followed by fine-tuning on optical coherence tomography images. We are now in the process of evaluating these models for their value-added in the clinical workflow by measuring the impact on time and accuracy of clinical diagnosis when AI predictions are presented to clinicians alongside typical OCT data.
Read more here:
![](https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_200/public/media/images/2022-10/thakoor_robustness2.png?itok=yV-6q2JM 200w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_260/public/media/images/2022-10/thakoor_robustness2.png?itok=Y_Ptr1uK 260w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_320/public/media/images/2022-10/thakoor_robustness2.png?itok=qxiYZ2W2 320w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_400/public/media/images/2022-10/thakoor_robustness2.png?itok=2kO9zYdT 400w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_520/public/media/images/2022-10/thakoor_robustness2.png?itok=o0klH3Xo 520w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_640/public/media/images/2022-10/thakoor_robustness2.png?itok=PrTWrDy7 640w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_800/public/media/images/2022-10/thakoor_robustness2.png?itok=pkheg2sz 800w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_1040/public/media/images/2022-10/thakoor_robustness2.png?itok=CZg9kz_3 1040w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_1600/public/media/images/2022-10/thakoor_robustness2.png?itok=F0VITtrl 1280w)
![](https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_200/public/media/images/2022-10/thakoor_robustness3.png?itok=zIJ2hJ0z 200w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_260/public/media/images/2022-10/thakoor_robustness3.png?itok=col14rJy 260w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_320/public/media/images/2022-10/thakoor_robustness3.png?itok=-D0_ZGM0 320w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_400/public/media/images/2022-10/thakoor_robustness3.png?itok=9xs7KhkA 400w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_520/public/media/images/2022-10/thakoor_robustness3.png?itok=Z183yA6k 520w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_640/public/media/images/2022-10/thakoor_robustness3.png?itok=glSJTCgY 640w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_800/public/media/images/2022-10/thakoor_robustness3.png?itok=_aqkh_d_ 800w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_1040/public/media/images/2022-10/thakoor_robustness3.png?itok=lNu3wwsw 1040w, https://www.vagelos.columbia.edu/sites/default/files/styles/cola_media_1600/public/media/images/2022-10/thakoor_robustness3.png?itok=dTbAnqEo 1280w)
Robust AMD Detection from Multiple Modalities
We achieved state-of-the-art 3-class Age-Related Macular Degeneration (AMD) detection from multiple imaging modalities (OCT, OCTA, high-definition 5-line 2D b-scans, and low-resolution 2D b-scans). We also achieved interpretability via Grad-CAMs and via comparing odds ratios of features of importance both for AI and for human experts. Variation in feature rank will help guide us as to how to improve AI and may help elucidate novel clinical features for accurate AMD detection.
Read more here: